Programming Assignment 2
CS-420 Spring 2024

Juan Pablo Zendejas
March 15th, 2024

For this programming assignment, I was tasked with creating a variety of functions for
different purposes to practice functional programming concepts like fold /reduce, recursion,
and function composition. In all, I managed to get a full score on the autograder and I
felt that I had created acceptable solutions that are clean and easy to understand.

While I didn’t work with anyone specifically on this project, I did end up searching for
help online when I felt I had hit a wall. For example, I wanted to use only one foldr
call on my sepConcat function and I was having trouble creating a lambda function that
would work. I looked at some StackOverflow! answers for some guidance and I found I
was close, but I just had to re-arrange my use of the ++ operator to follow the ordering
of the foldr. I also found out about the trick of using zip [0..] xs to get the index of
each element of a list, which was useful for the final problem.

Now, we will look at each function and my solution.

1 Part A: Basic Haskell Prelude

These functions are simple implementations using basic Haskell prelude functions.

1.1 myMod

The idea is fairly simple. Use div to perform integer division of x and y. Then, we can
multiply it by y and subtract that from x to get the remainder of the division, which is
the modulus operator.

myMod :: Int -> Int -> Int
myMod x y = x - (y » div x y)

1https: //stackoverflow.com/a/44101237

https://stackoverflow.com/a/44101237

1.2 toDigit

This function uses recursion. If the input is 00, then we just return an empty list. The
recursive step then splits the integer into the first digit using myMod, and then the rest
of the number using div. Finally, the digit is appended to the end and toDigit is called
recursively to prepend its result.

toDigit :: Int -> [Int]
toDigit n | n <=0 = [1
| otherwise = toDigit (div n 10) ++ [myMod n 10]

1.3 reverselList

Another recursive function. To reverse the list, I use a pattern matching to split the first
element of the list out. Then, just prepend the reverse of the rest of the list to the first
element.

reverselList :: [a] -> [a]
reverselList [] = []
reverselList (x:xs) = reverselList xs ++ [x]

1.4 sumlList

Follows a similar strategy. Pattern-matching to split the first element off, then add it
to the sum of the rest of the list. This recursive call is ended by a base case of 0 for an
empty list.

sumList :: [Int] -> Int
sumList [] = 0
sumList (x:xs) = sumList xs + X

1.5 toDigitRev

Just a function composition.

toDigitRev :: Int -> [Int]
toDigitRev n = reverselList (toDigit n)

2 Part B: Folding Functions

These functions use the foldr prelude function to perform operations on a list.

2.1 myDouble

The idea was to use foldr with a list of the parameter twice, so foldr could add them
together.

myDouble :: Int -> Int
myDouble n = foldr (+) @ [n,n]

2.2 doubleEveryOther

This function did not have to use foldr. Here, the idea was to use recursion. The
recursive case would grab the first two elements and the rest of the list. Then, the 2nd
element would be doubled, and the elements would be appended in order but with the
doubleEveryOther recursive call for the rest of the list.

doubleEveryOther :: [Int] -> [Int]

doubleEveryOther [] = []

doubleEveryOther [x] = [x]

doubleEveryOther (x:y:xs) = x : myDouble y : doubleEveryOther xs

2.3 mySquare
Similar to myDouble, but using multiply instead of adding them.

mySquare :: Int -> Int
mySquare n = foldr (x) 1 [n,n]

2.4 sqSum

Here, we use a custom lambda function. In addition, because the last parameter is the
list, we can also use partial function application or currying to omit the name of the first
argument and make the declaration cleaner. The lambda function just adds the square
of x to the accumulator of foldr.

sqSum :: [Int] -> Int
sqSum = foldr (\x acc -> mySquare x + acc) 0

2.5 sumDigits

This function needs to add the digits of all the numbers in the list. Here, the custom
lambda function uses the previous sumList and toDigit functions. It adds the sum of
the digits of each element to the accumulator.

sumbDigits :: [Int] -> Int
sumDigits = foldr (\x acc -> acc + (sumList $ toDigit x)) 0

2.6 sepConcat

Concatenate a list of strings while interspersing a separator string in between each string.
For this, the custom lambda function will prepend the string to the accumulator, but
only put the separator in between if there has already been an element added to the
accumulator. This way, we avoid the off-by-one error of appending the separator to the
end of the final string.

sepConcat :: String -> [String] -> String
sepConcat sep = foldr (\x acc -> x ++ if acc == [] then acc else sep ++ acc)

(Y

3 Part C: Credit Card Problem

This is an application of some of the functions I've written to create a function that
validates a credit card number using the Luhn algorithm. Double every other digit of the
card number starting from the end (reversed). Take the sum of those digits. If the sum
is equal to 0 mod 10, it is a valid credit card number.

validate :: Int -> Bool
validate n = myMod (sumDigits (doubleEveryOther (toDigitRev n))) 10 ==

4 Part D: Sorting Algorithms

The task for this section was to implement some sorting algorithms in a functional
manner.

4.1 splitHalf

For the splitHalf function, it needs to split a list into a tuple where the left and right
tuple each have half of the list. To accomplish this, I first created a generic mySplit
function that splits onto an index. This is accomplished by taking in an index and a pair
of lists. The index is the number of elements from the right pair that should be moved
into the left pair. So, every recursive call will move the first element from the right list
into the end of the left list. Then, mySplit will be called again with n decremented. The
base case, when n = 0, is to just return the pair.

Finally, splitHalf just calls the mySplit function with n equal to half the length of
the list.

mySplit @ p = p
mySplit n (xs,(y:ys)) = mySplit (n-1) (xs++[yl, ys)

splitHalf :: [a] -> ([al, [al)

splitHalf xs = mySplit (div U 2) ([1, xs)
where 1 = length xs

4.2 mergelList

This is where it starts to get complicated. mergeList is a function that receives two lists
of pairs that are sorted by the 2nd element of the pair, and merges them into one big
sorted list. The way I thought about this problem after talking with the professor is to
consider the first element of each list. Then, I just let the smaller one go first and recurse.
To accomplish this, I used a bunch of pattern matching and a guarded statement. Here,
axs and ays are the whole lists. Then, px and py are the pairs that I should prepend.
xs and ys are the rest of the list without the first element. Finally, x and y are the
element the list is sorted by. The guard statement just compares x and y, and uses that
information to prepend the pair with the smaller sorting value.

mergeList :: Ord b = [(a, b)] -> [(a, b)] -> [(a, b)]
mergelList [] pys pys
mergelList pxs [] = pxs

mergelList axsa(pxa(_,x) : xs) aysa(pya(_,y) : ys)
| x <=y = px : mergelList xs ays
| otherwise = py : mergelList axs ys

4.3 mergeSort

Finally, I got to implement the merge sort algorithm. I first created some helper functions.
applyPair applies a function f with the parameters given by a tuple. applyEachPair
applies a function f to both elements of a tuple, and returns a new tuple. Then, mergeSort
puts it all together and applies merge sort to each half of the list; then applies mergeList
to the pair of the sorted halves. The base cases end the recursion of mergeSort, since a
list of 0 or 1 elements is sorted.

applyPair :: (a->b->c) -> (a,b) -> ¢
applyPair f (x,y) = f x y

applyEachPair :: (a->b) -> (a,a) -> (b,b)
applyEachPair f (x, y) = (f x, f y)

mergeSort :: Ord b = [(a,b)] -> [(a,b)]

mergeSort [] = []

mergeSort [x] = [x]

mergeSort xs = applyPair mergelList (applyEachPair mergeSort (splitHalf xs))

5 Part E: Bigint

Here, I was tasked to work with a new type BigInt which is a list of integers.

5.1 clone

Clone takes a value and a number, and creates a list with that value repeated n times.
So, a simple recursive solution is to use the cons operator and call clone again with n
decremented. The base case is when n = 0, which returns and empty list.

clone :: a -> Int -> [al]
clone _ 0 = []

clone x n = x : clone x (n-1)

5.2 padZero

This function will take two BigInts and return a pair of new BigInts that have the same
length. Here, I just made a quick helper function clonez that clones zero n times. Then,
I use a guarded expression to prepend zeros based on the difference of the lengths. If ys
is shorter, it gets x1 - yl zeros prepended, and vice-versa for xs.

clonez = clone 0

padZero :: BigInt -> BigInt -> (BigInt, BigInt)

padZero xs ys | xl > yl = (xs, clonez (xl-yl) ++ ys)
| xU < yl = (clonez (yl-x1) ++ xS, ys)
| otherwise = (xs,ys)
where x1 = length xs
yl = length ys

5.3 removeZero

Kind of like the opposite of padzero. Takes a BigInt and removes leading zeros that have
no value. This is just a simple recursive pattern matching. If the first element is zero,
remove it and call removeZero again. If we can’t pattern match a zero, just return the
list.

removeZero :: BigInt -> BigInt
removeZero (@:xs) = removeZero Xs
removeZero Xs = XS

5.4 bigAdd

This function will add two BigInts. To implement this, I delegated to a helper function
bigAdd'. The reasoning was so I could use tail recursion and bring the carry value over
each time.

First, bigAdd' will take two reversed BigInts, along with a carry bit. We take the sum
of the first integers from the lists, along with the carry sum. Then, we take the first digit
of the sum and prepend it, and then recursively call bigAdd' with the carry bit being the
sum divided by 10, and the rest of the two lists. The base case, then, simply takes empty
lists and returns the carry bit.

The actual implementation of bigAdd pads the incoming BigInts with zeros, reverses
them, and calls bigAdd' with a carry of 0. Finally, at the end, the result is reversed and
trimmed of zeros.

bigAdd' []1 []1 n = [n]
bigAdd' (x:xs) (y:ys) n = (myMod sum 10) : bigAdd' xs ys (div sum 10)
where sum = x+y+n

bigAdd :: BigInt -> BigInt -> BiglInt
bigAdd xs ys = removeZero $ reverselList $ bigAdd' (reverselist zxs)
< (reverselList zys) 0

where (zxs,zys) = padZero xs ys

5.5 mulByDigit

I followed a similar strategy to bigAdd. Essentially, the helper function digMul' will take
a reversed list, and then multiply the first digit by some factor q. Then, the carry bit
is added, and the sum is split into the first digit and the other digits. The first digit is
prepended to the recursive call of digMul' with the rest of the list and the same factor.

digMul' [] _ n = reverselList $ toDigit n
digMul' (x:xs) q n = (myMod sum 10) : digMul' xs q (div sum 10)
where sum = (x*qQ)+n

mulBybDigit :: Int -> BigInt -> BiglInt
mulBybDigit q xs = removeZero $ reverselList $ digMul' (reverselist xs) q 0

5.6 bigMul

Finally, the bigMul function will take two BigInts and multiply them together. This
function follows a basic long multiplication algorithm. That is, I take each digit from
the second number and multiply it digit-by-digit to the first number. Then, based on
its position, I add zeros to the end of the result. To implement this in Haskell, I used
a helper function megaSum that recursively adds a list of BigInts using the previously

created bigAdd function. To create the list of numbers to add, I had to reverse the 2nd
list ys into rys. Then, by using the zip method, I combined each element of rys with its
index. Since the list was reversed, this index is the number of zeros to add onto the sum.
Each element of the list passed to megaSum is that digit of ys, q, passed to mulByDigit
with the whole BigInt xs. Finally, zeros are appended to the end based on the index.
The sum of all of these products is the final result.

megaSum :: [BigInt] -> BigInt
megaSum [] = [0]
megaSum (x:xs) = bigAdd x $ megaSum xs

bigMul :: BigInt -> BigInt -> BiglInt
bigMul xs ys = megaSum [mulByDigit q xs ++ clone 0 i | (i,q) <- zip [0..]

< rys]
where rys = reverselList ys

6 Results

The Autograder on EDORAS gave me full marks.

Results

Results: [90.00/90.00] | [100.00%]

	Part A: Basic Haskell Prelude
	myMod
	toDigit
	reverseList
	sumList
	toDigitRev

	Part B: Folding Functions
	myDouble
	doubleEveryOther
	mySquare
	sqSum
	sumDigits
	sepConcat

	Part C: Credit Card Problem
	Part D: Sorting Algorithms
	splitHalf
	mergeList
	mergeSort

	Part E: BigInt
	clone
	padZero
	removeZero
	bigAdd
	mulByDigit
	bigMul

	Results

